
PRESENTS

Fuzzing integration for OCI: runC and umoci
In collaboration with the Opencontainers maintainers and The Linux Foundation

Authors
David Korczynski <david@adalogics.com>
Adam Korczynski <adam@adalogics.com>
Date: 22nd april, 2021

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:david@adalogics.com
mailto:adam@adalogics.com


Umoci and runC: Setting up fuzzing infrastructure, March 2021

Executive summary
Goal of engagement
The overall goal of the engagement described in this report was to integrate security and

reliability analysis by way of fuzzing runC and Umoci projects. This was done in a manner

such that vulnerability analysis will happen continuously (even after the engagement). RunC

and Umoci are both written in Go which makes them susceptible to panics caused by issues

such as index out of range, slice bounds out of range, assignment to entry in nil map and nil

pointer dereferences.

Scope of engagement
The entire code base for both projects was considered. For the runC project critical

dependencies were also considered.

Methodology
Ada Logic’s security researchers performed an initial analysis of the two projects to

determine the security criticality as well as an optimal approach to initiating a fuzzing

infrastructure. Following this we started writing the actual fuzzers and creating the oss-fuzz

set up.

Results summarised
17 fuzzers developed for runC and Umoci

Documentation and environment for running Umoci fuzzers locally

Integration of continuous fuzzing for runC by way of OSS-Fuzz

No bugs found, however, 9 fuzzers are pending being merged and we predict once
all fuzzers have been merged that some bugs will be found.

Ada Logics
London, United Kingdom

1



Umoci and runC: Setting up fuzzing infrastructure, March 2021

Engagement process and methodology
Initial assessment of library
The first part of the engagement consisted of an initial assessment of both projects. This part

of the engagement does not yield any fuzzers itself, however it does provide answers that

are important to writing the fuzzers itself. Below we summarize these findings and what they

meant for the engagement.

While the scope of the engagement included two projects, runC and Umoci, the initial

assessment revealed a higher security criticality for runC than for Umoci, which meant that

more time was spent on this project when writing the fuzzers.

Next, we found that runC had few targets that would be considered obvious entry points from

a fuzzing perspective. When considering initial entry points for a target project, parsing

routines, text processing, encoding, marshaling API’s are targets that are well suited for

modern fuzzing engines. There is a limited amount of this type of code in the runC

codebase, and as a result we considered other ways to utilize modern fuzzing capabilities to

pass random data to the project. This revealed a necessity to write a small helper library

since several of the API’s we wished to target take structures as input. At first we looked at

the gofuzz project to create fuzzed structures, but we encountered a few shortcomings in its

interface with the go-fuzz engine. This led us to write our own helper project to fuzz

structures which we call go-fuzz-headers. It is inspired by gofuzz and can be found here:

https://github.com/AdaLogics/go-fuzz-headers

Ada Logics
London, United Kingdom

2

https://github.com/google/gofuzz
https://github.com/dvyukov/go-fuzz
https://github.com/AdaLogics/go-fuzz-headers


Umoci and runC: Setting up fuzzing infrastructure, March 2021

Overview of fuzzers
Below we give an overview of the fuzzers contributed to runC and Umoci.

runC
In total 12 fuzzers were written for the runC project. The fuzzers were added in the

directories of the packages they target, while a directory for utils is kept at /tests/fuzzing.

Utils currently refers to the OSS-fuzz build script, and in case other utils need to be added

such as seed corpora, dictionaries or general helper methods, these can be placed there.

Fuzzer name Path Package

FuzzCgroupReader runc/libcontainer/cgroups/fs2 fs2

FuzzGetStats runc/libcontainer/cgroups/fs2 fs2

Fuzz runc/libcontainer/specconv specconv

Fuzz runc/libcontainer/cgroups/devices devices

FuzzSecureJoin runc/libcontainer/cgroups/fscommon fscommon

FuzzFindMpDir runc/libcontainer/intelrdt intelrdt

FuzzSetCacheScema runc/libcontainer/intelrdt intelrdt

FuzzParseMonFeatures runc/libcontainer/intelrdt intelrdt

FuzzStateApi runc/libcontainer libcontainer

FuzzUser runc/libcontainer/user user

FuzzUIDMap runc/libcontainer/userns userns

FuzzUnmarshalJSON runc/libcontainer/configs configs

Ada Logics
London, United Kingdom

3



Umoci and runC: Setting up fuzzing infrastructure, March 2021

Umoci
5 fuzzers were added to the Umoci project.

Fuzzer name Path Package

FuzzGenerateLayer umoci/oci/layer layer

FuzzUnpack umoci/oci/layer layer

FuzzMutate umoci/mutate mutate

Fuzz umoci/oci/casext casext

Fuzz umoci/pkg/hardening hardening

Pull Requests with the fuzzers
In the following tables we outline the pull requests for the given fuzzers, which shows
explicitly which fuzzers are still pending for analysis. During the engagement the maintainers
asked the Ada Logics researchers to wait with new commits due to lack of movement in
getting the fuzzers through the review process. In practice it took several weeks for most pull
requests.
Runc

Fuzzer name Link Merged

FuzzCgroupReader https://github.com/opencontainers/runc/p
ull/2879

Pending

FuzzGetStats https://github.com/AdaLogics/runc-fuzzer
s/blob/main/fs2_fuzzer.go

Pending*

Fuzz https://github.com/opencontainers/runc/p
ull/2864

Pending

Fuzz https://github.com/AdaLogics/runc-fuzzer
s/blob/main/devices_fuzzer.go

Pending*

FuzzSecureJoin https://github.com/opencontainers/runc/p
ull/2878

Pending

FuzzFindMpDir https://github.com/AdaLogics/runc-fuzzer
s/blob/main/intelrdt_fuzzer.go

Pending*

Ada Logics
London, United Kingdom

4

https://github.com/opencontainers/runc/pull/2879
https://github.com/opencontainers/runc/pull/2879
https://github.com/AdaLogics/runc-fuzzers/blob/main/fs2_fuzzer.go
https://github.com/AdaLogics/runc-fuzzers/blob/main/fs2_fuzzer.go
https://github.com/opencontainers/runc/pull/2864
https://github.com/opencontainers/runc/pull/2864
https://github.com/AdaLogics/runc-fuzzers/blob/main/devices_fuzzer.go
https://github.com/AdaLogics/runc-fuzzers/blob/main/devices_fuzzer.go
https://github.com/opencontainers/runc/pull/2878
https://github.com/opencontainers/runc/pull/2878
https://github.com/AdaLogics/runc-fuzzers/blob/main/intelrdt_fuzzer.go
https://github.com/AdaLogics/runc-fuzzers/blob/main/intelrdt_fuzzer.go


Umoci and runC: Setting up fuzzing infrastructure, March 2021

FuzzSetCacheScema https://github.com/AdaLogics/runc-fuzzer
s/blob/main/intelrdt_fuzzer.go

Pending*

FuzzParseMonFeatures https://github.com/AdaLogics/runc-fuzzer
s/blob/main/intelrdt_fuzzer.go

Pending*

FuzzStateApi https://github.com/opencontainers/runc/p
ull/2848

Pending

FuzzUser https://github.com/opencontainers/runc/p
ull/2841

Merged

FuzzUIDMap https://github.com/opencontainers/runc/p
ull/2841

Merged

FuzzUnmarshalJSON https://github.com/opencontainers/runc/p
ull/2841

Merged

*Upon request by maintainers, not committed:
https://github.com/opencontainers/runc/pull/2878#issuecomment-812203536

Umoci

Fuzzer name Path Package

FuzzGenerateLayer https://github.com/opencontainers/umoci
/pull/365

Merged

FuzzUnpack https://github.com/opencontainers/umoci
/pull/371

Merged

FuzzMutate https://github.com/opencontainers/umoci
/pull/371

Merged

Fuzz https://github.com/opencontainers/umoci
/pull/362

Merged

Fuzz https://github.com/opencontainers/umoci
/pull/362

Merged

Results

Ada Logics
London, United Kingdom

5

https://github.com/AdaLogics/runc-fuzzers/blob/main/intelrdt_fuzzer.go
https://github.com/AdaLogics/runc-fuzzers/blob/main/intelrdt_fuzzer.go
https://github.com/AdaLogics/runc-fuzzers/blob/main/intelrdt_fuzzer.go
https://github.com/AdaLogics/runc-fuzzers/blob/main/intelrdt_fuzzer.go
https://github.com/opencontainers/runc/pull/2848
https://github.com/opencontainers/runc/pull/2848
https://github.com/opencontainers/runc/pull/2841
https://github.com/opencontainers/runc/pull/2841
https://github.com/opencontainers/runc/pull/2841
https://github.com/opencontainers/runc/pull/2841
https://github.com/opencontainers/runc/pull/2841
https://github.com/opencontainers/runc/pull/2841
https://github.com/opencontainers/runc/pull/2878#issuecomment-812203536
https://github.com/opencontainers/umoci/pull/365
https://github.com/opencontainers/umoci/pull/365
https://github.com/opencontainers/umoci/pull/371
https://github.com/opencontainers/umoci/pull/371
https://github.com/opencontainers/umoci/pull/371
https://github.com/opencontainers/umoci/pull/371
https://github.com/opencontainers/umoci/pull/362
https://github.com/opencontainers/umoci/pull/362
https://github.com/opencontainers/umoci/pull/362
https://github.com/opencontainers/umoci/pull/362


Umoci and runC: Setting up fuzzing infrastructure, March 2021

The fuzzers found no bug during the assessment, which is a great achievement to the RunC
and Umoci authors. However, we acknowledge that there is a reasonable expectation that
bugs will occur once the pending pull requests are merged in. We go into details with this in
the next section.

Advice following engagement
In this section we outline the recommended next steps for fuzzing runC and umoci. We

divide the recommendations into short-term action steps followed by long-term, strategic

steps to further develop the projects’ fuzzing capabilities.

Short-term advice

1: Merge the pending fuzzers

The primary advice in the short-term is to merge in any of the pending fuzzers. During the

engagement, there was not enough movement on the PRs and a fair amount of the fuzzers

are still pending. These fuzzers are valuable and should be top priority in terms of moving

fuzzing RunC and Umoci forward.

We recommended moving the currently unmerged fuzzers for runC to either runC’s own

repository or to a repository dedicated to hosting fuzzers for the project. Storing the fuzzers

on runC’s main repository will allow for contributors to quickly get a sense of what has

already been done in terms of fuzzing the project.

The fuzzers make use of Ada Logics’ go-fuzz-headers library which introduces a new

dependency to runC. This dependency is not used in production and only by the fuzzers,

and since runC uses vendoring, the runC maintainers may want to consider alternative

integration strategies. In doing so, it is Ada Logics’ recommendation to not postpone running

the fuzzers entirely, but instead start running the fuzzers while establishing a holistic solution

to adding the dependency. In case this is an issue that runC’s maintainers wish to resolve,

Ada Logics offer the following suggestion:

Ada Logics
London, United Kingdom

6

https://github.com/AdaLogics/go-fuzz-headers


Umoci and runC: Setting up fuzzing infrastructure, March 2021

First of all, start running the fuzzers from Ada Logics’ runc-fuzzers repository. Next, move the

fuzzers upstream without including the go-fuzz-headers vendor, the following actionable

steps can be taken:

● Merge the fuzzers into runC’s main repository.

● Exclude fuzzers from being checked during CI tests to eliminate build errors from

missing dependencies in the vendor folder.

● Install the fuzzing-dependencies when building them in OSS-fuzz like is done here.

We want to stress the importance of continuous fuzzing as the fuzzers for Umoci and runC

continue to grow in coverage over time. As an example, consider the following figure which

displays data from an experiment of running the StateApiFuzzer for 6 hours. The x-axis plots

time and the y-axis plots coverage:

Thus, running all fuzzers continuously will allow them to explore coverage in their theoretical

reach. Even after all code that a fuzzer can explore has been explored, it is recommended to

keep running them continuously. Changes in upstream code may allow fuzzers to reach new

parts of the project, and even so, there are examples of bugs having been found by fuzzers

several cpu years after coverage stopped increasing.

RunC can benefit from its integration into OSS-fuzz to run the fuzzers continuously. All

fuzzers added to the upstream build script run through regular scheduled jobs and the

maintainers get notified whenever bugs are found. Additionally, OSS-fuzz builds up the

corpus over time which offers a fairly hands-off solution for the runC maintainers.

To help maintainers and contributors of Umoci execute the fuzzers continuously we added

documentation on running them locally. All that is required to do that is a local installation of

Ada Logics
London, United Kingdom

7

https://github.com/AdaLogics/runc-fuzzers/blob/main/build.sh#L7
https://github.com/opencontainers/umoci/pull/372


Umoci and runC: Setting up fuzzing infrastructure, March 2021

Docker. Naturally, we encourage everyone to run the fuzzers locally and report any issues

responsibly.

Link to repository containing runC’s unmerged fuzzers:

https://github.com/AdaLogics/runc-fuzzers

Link to pull request to build runC’s unmerged fuzzers:

https://github.com/opencontainers/runc/pull/2914

Once the above has been achieved, it is recommended to allow the fuzzers to run

continuously for a couple of weeks before any further modifications are made. This is to

verify that the fuzzers can indeed run continuously without interruptions such as crashes that

do not qualify as valid bugs. Such interruptions could arise from edge cases in the input

generated by the fuzzing engine that breaks the fuzzer or causes it to time out or run out of

memory. Once the fuzzers have been verified to run continuously, a few low-effort steps can

be taken to increase the value by the fuzzers. We list these below.

Long-term advice

In this section we outline two pieces of advice for the long-term.

1: Fuzzing during CI tests

The fuzzers can be run during CI tests for a few minutes to catch any immediate bugs

introduced in the code committed. This will help discover bugs before being merged into the

project as well as support the continuous fuzzing efforts since the fuzzers will not be blocked

by bugs that are found within a short fuzz run. This will allow the fuzzers to run continuously

by OSS-fuzz to test for harder-to-find bugs. runC qualifies for CIFuzz as it is integrated into

OSS-fuzz.

2: runC: Add support for running processes in containers

During the engagement, Ada Logics looked at the possibilities for running processes in

containers created by a fuzzer in the runC project. Given the current state of fuzzing maturity

of the project, it was deemed out of scope to enable this during an initial fuzzing

infrastructure set up.

Ada Logics
London, United Kingdom

8

https://github.com/AdaLogics/runc-fuzzers
https://github.com/opencontainers/runc/pull/2914
https://google.github.io/oss-fuzz/getting-started/continuous-integration/


Umoci and runC: Setting up fuzzing infrastructure, March 2021

For future reference, the steps in /libcontainer/README.md can be followed until the point

where a process is run:

err := container.Run(process)

if err != nil {

container.Destroy()

logrus.Fatal(err)

return

}

While the process at this point does exit gracefully, it is not executed successfully.

Adding support for processes to be run by containers created by fuzzers will allow

contributors to write fuzzers that test for critical bugs like container escapes.

The fuzzer Ada Logics used to attempt executing processes against containers inside

fuzzers can be sent to the runC maintainers upon request.

Conclusions
As part of this engagement, 17 fuzzers have been developed for runC and Umoci that target

parts of the codebase in which there have previously been bugs. No bugs were found during

the engagement. However, we note here that a significant portion of the fuzzers are still

pending merge and thus pending being run for a longer period of time. This means a

significant part of the code base is still to be analysed and we can only get a complete

understanding of the project in terms of bugs once the PRs get merged. The fuzzing suite

integrated is highly autonomous to a degree where the fuzzers of runC require less effort to

run than the unit test suite and the fuzzing suite provided for Umoci requires a few steps to

execute locally.

Ada Logics
London, United Kingdom

9

https://github.com/opencontainers/runc/blob/master/libcontainer/README.md

